The post Why the arrow of time is irreversible. appeared first on Unifying Quantum and Relativistic Theories.

]]>According to some physicists we live in a universe made up of fixed blocks of space-time while defining the change brought on by time in terms of our movement through each successive block. However, it is also possible it is not the result of us moving THROUGH but IN them.

But before we can continue, we must first define what time is.

Some define it only in the abstract saying that is an invention of the human consciousness that gives us a sense of order, a before and after so to speak. However, many physicists define it in terms of the physical properties of a space-time dimension.

Yet, the observable properties of time are something that most of us can agree upon.

One of the most persistent is that it is not directly perceived as matter or space but as a physical, chemical, and biological change in physical space.

This indicates a unit of time may be measure of sequential ordering of change similar to how a unit of length is measure of the position of an object in space. This is because similar to time, length is perceived only as measurement of where in relation to arbitrary reference point in space an object is located.

However, Einstein defined the energy required for a change in space in terms of a dynamic interaction between space and time.

For example, he defined the change caused by gravity NOT in terms of their rigidity but in terms of a dynamic interaction between them

But in his block universe he did not define change in those terms because according to it each block, with a different spatial configuration already exists and what we perceive as change or the passage of time is caused by our movement THROUGH them.

However, this suggests your birth death and every other moment of your life is out there in space-time waiting for you to arrive.

This also suggests that free will does not exist because your future is etched in a block of space-time waiting for you to move through it and there is nothing you can do to change it.

However, Einstein provided another interpretation for the changes the human consciousness associates with time when he as was mentioned earlier defined gravity in a space-time environment in terms of a dynamic interaction between them. This is because it gives us a physical mechanism for defining the ordering of change.

One can understand why by using an example of two dots “living” on the surface of a balloon. The “surface” of the balloon will represent the “surface” of three-dimensional space and the three-dimensional space outside of it will represent the time dimension in Einstein theories.

For example, if one pushes down on its surface, it will change spatial the configuration of the two dots. The change in its surface would be define not only by the distance it move but by the direction.

As was mentioned earlier, Einstein defined gravity in terms of the dynamic interaction between the space and time dimension. For example, the energy of a rocket will change the configuration of the “surface” of three-dimensional space with respect to the time dimension. This means, similar to the balloon one can define that change NOT in terms of the rigidity of space time but in terms of its dynamic properties.

If true as was also mentioned earlier change is a result of a dynamic interaction between space and time it means the future is the result of an interaction of the past with the present and the decisions we make can and do affect the future.

However, another advantage of assuming that is it is that gives us a way to define why human consciousness perceives it to be irreversible in terms of its spatial properties.

For example, if we removed the pressure on the balloon the two dots would return to their original position. However, that removal causes the dots to move in the opposite direction from were when it was applied. Yet even though their positions are indistinguishable from their original ones the dots “living” on its surface would know they had not moved backwards in time because they can observe the sequential ordering of the changes that brought them there. In other words, it would tell them they had not moved backwards in time even though they occupied same points in space.

Putting it another way the sense of order that tells the human consciousness time always moves forward is a result of the fact that consciousness also gives them the ability to observe the order of the spatial changes take place in our environment.

However, assuming it is a measure of the sequential ordering of change ALSO tells us why the laws of physics are NOT reversible with respect to it even though they appear to be. This is because as was mentioned earlier if it is measured from an arbitrary reference point in space the change caused by their reversal will ALWAYS repeat ALWAYS create a new event (with respect to that point) in the sequence of events that returned it to its original configuration.

Therefore, if one accepts time as being a measure of the sequent ordering of a spatial of change in an environment the future or forward movement of it can NEVER repeat NEVER be reversed.

In other words, if we assume the universe is made up a flexible ball of space-time as Einstein’s definition of gravity suggests instead of rigid blocks one can understand how and why the human consciousness perceives sense of order and why we feel time always moves forward even though the laws of physics it MAY not.

The post Why the arrow of time is irreversible. appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Einstein’s block universe fact or fiction appeared first on Unifying Quantum and Relativistic Theories.

]]>According to Einstein we live in a universe made up of fixed blocks of space-time while defining the change brought on by time in terms of our movement through each successive block. However, it is also possible it is not the result of us moving THROUGH them but IN them.

But before we can continue, we must first define what time is.

Some define it only in the abstract saying that is an invention of the human consciousness that gives us a sense of order, a before and after so to speak. However, many physicists define it in terms of the physical properties of a space-time dimension.

Yet, the observable properties of time are something that most of us can agree upon.

One of the most persistent is that it is not directly perceived as matter or space but as a physical, chemical, and biological change in physical space.

One reason why most humans perceive time as only a measure of sequential ordering of change MAY be because similar to length it is perceived only as measurement of where in relation to arbitrary reference point in space an object is located. Putting it another way time MUST be define as measure of when an event occurred with respect to an arbitrary reference point attached to the sequence of the events it is a part of.

As was mentioned earlier Einstein define the passage of time in terms of our movement through successive fixed blocks of space-time.

However, this means your birth death and every other moment of your life is out there in space-time waiting for you to arrive.

This also suggests that free will does not exist because your future is etched in a block of space-time waiting for you to move through it and there is nothing you can do to change it.

Yet, he provided another way to explian

the past, present and future when he derived the energy required for them to occur in terms of a dynamic interaction between space and time. This is because it gives us a way to define how and why change occurs in terms of us moving IN space and time instead of moving thought static ridged blocks of it.

One can understand why by using an example of two dots “living” on the surface of a balloon. The surface of the balloon will represent the “surface” of three dimensional space while the time dimension is represented by the space surrounding its surface.

If one pushes down on its surface, it will cause the two dots to move. But if someone releases the pressure on the balloon the dots would return to their original position. Putting it another way the dynamic interaction of its surface with space is responsible for the movement of the dots

Additionally, if one accepts the definition of time given earlier that it is a measure of the sequential ordering of events one would know that it did not travel back in time because the return to its original position is the next event in a sequence of events.

As was mentioned earlier, Einstein derived gravity in terms of a dynamic interaction between the space and time dimensions. This means, similar to the balloon one can define the energy associated with change NOT in terms of its rigidity but in terms of its dynamic properties.

Putting it another way one can define the changes most humans associated with time in terms of us moving IN a dynamic space-time environment instead of moving THROUGH rigid blocks of it.

However, if one accepts the definition given above that time is a measure of when an event occurred in relation to arbitrary reference point attached to the sequence of the events one can understand why time is irreversible. This is because when one chooses a reference point to define when an event occurred the time required for the next event in a sequence such as returning to its starting point must be added to it.

Putting it another way the reason time MUST always move forward is because to measure it one must anchor it to when the first event took place and returning to the same place would constitute another event in a sequence of events.

However, it also tells us why the laws of physics are perceived to reversible with respect to time even though they are NOT because in most cases they ONLY define the time for change to take place from where they are applied. However, this would not be the case if they were anchored in the first event of the series such as the beginning of the universe.

In other words, if we assume the universe is made up a dynamic “ball” of space-time as Einstein’s definition of gravity suggests instead of rigid blocks one can understand how and why the human consciousness perceives sense of order and why time MUST always move forward even though the laws of physics tell us it does not have to.

The post Einstein’s block universe fact or fiction appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Should we allow math to be our only definition of reality? appeared first on Unifying Quantum and Relativistic Theories.

]]>One thing all theoreticians especially physicist should be aware of is the fact there are many ways to predict observations but only one can define the reason why they occur.

History has shown assuming the existence of something based primarily on the predictive powers of mathematics and not on observations of how an environment evolves can be dangerous.

For example, in the Ptolemaic or geocentric system of astronomy, many thought the existence of epicycles, were required to explain the retrograde motion of the Moon, Sun, and planets.

It was not until scientific investigations were stimulated by Copernicus’s publication of his heliocentric theory and Galileo’s observation of the phase of the moons of Jupiter did many European scientists consider the fact that epicycles did not exist.

This is true even though many Greek, Indian and Muslim savants had published heliocentric hypotheses centuries before Copernicus.

However, why did it take almost two thousand years for them to realize their ideas were incorrect?

One reason may have been because the math that used epicycles was able to predict their positions within the observational tolerances of the equipment they used to define them. However, if the scientists who assumed the existence of epicycles had taken the time to observe how objects moved on earth, they would have realized there was a problem because, at least on earth, objects “naturally” did NOT follow the curve path associated with of epicycles.

However, because they were still able to make accurate predictions of a planet’s position based on the existence of epicycles, they were able to ignore those observations and suppress the more accurate Greek, Indian and Muslim ideas for almost 2000 years.

Yet they could not ignore the direct observational evidence provided by Galileo Galilei when in 1610 when he observed the evolution of phases of Venus that planets did not revolve around the earth. This caused a paradigm shift in our understanding of the universe.

Putting it another way, the heliocentric concept of our solar system could have become the dominate paradigm long before 1610 if European scientists had not ignored the how of objects moved or evolved on earth.

However, it would still be possible to use the math associated with the geocentric model along a powerful enough computer to predict the position of the planets within the tolerance of our modern instrumentation even though that math does not correctly define the evolution of their movement.

This FACT tells us that it is even more important now that we use observation of how a system evolves as well math to verify our understanding of their environments today. This is because the advance state of mathematics and computing makes it even more likely that models can be made that are within the tolerance of our observing equipment even though they may be based on a false mathematical premise.

For example, the proponents of the Copenhagen interpretation of Quantum mechanics assume particles exist in a state of superposition or exist in many different places before observed based solely on mathematical evolution the wave function. But it cannot explain why a particle only appears when it was observed in terms of observations of environment it is defining and therefore cannot be validated as a solution to its evolution.

However, it is possible to validate a mathematical solution in terms of the environment by using its observable properties to define the math instead of using math to define those properties.

For example, the science of wave mechanics and Relativity tells us an electromagnetic wave moves continuously through space-time unless it is prevented from moving through time by someone or something interacting with it. This would result in it being confined to three-dimensional space. The science of wave mechanics also tells us the three-dimensional “walls” of this confinement will result in its energy being reflected back on itself thereby creating a resonant or standing wave in three-dimensional space. This would cause the energy of an electromagnetic wave to be concentrated at the point in space were a particle would be found. Additionally, wave mechanics also tells us the energy of a resonant system such as a standing wave can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency that the wave function associates with a particle.

Putting it another way when an electromagnetic wave is prevented from moving through space time either by being observed or encountering an object it is reduced or “Collapses” to a form a standing wave that would define the quantized energy quantum mechanics associates with a particle.

The physicist Richard Feynman is credited with saying “The weird thing about Quantum mechanics is that no one really understands it” in part because it defines reality ONLY in terms mathematical properties a wave function which only collapses to it when it is observed or interacts with something in its environment. However. it cannot explain what causes that to occur.

However, as was shown above one can understand why in terms of the OBSERVABLE properties of our universe if one assumes that it represents an electromagnetic wave in a space-time because as was shown above if it is prevented from evolving through space by an interaction with it, it WILL and MUST present itself as a particle.

Scientists ESPECIALLY physicists should realize math is only a TOOL to define define reality NOT a replacement for it.

The post Should we allow math to be our only definition of reality? appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Solving the cosmologic constant problem in terms of the dynamics of space time. appeared first on Unifying Quantum and Relativistic Theories.

]]>The cosmological constant problem or vacuum catastrophe is the disagreement between the observed value of the vacuum energy density or the small value of the cosmological constant and the theoretical large value of zero-point energy suggested by quantum field theory.

Depending on the Planck energy cutoff and other factors, the discrepancy is as high as 120 orders of magnitude.

In quantum physics, the vacuum or zero-point energy is the amount of energy in a point “volume” of space as prescribed by Werner Heisenberg’s uncertainty principal. Its existence is derived from that principle which tells us the mathematical point in space quantum mechanics uses to define particles have an inherent fuzziness. Therefore, it is assumed that it oscillates or fluctuate around that point.

One reason for the cosmological constant problem MAY be because Quantum Mechanics states that all fields, such as the electromagnetic one, must be quantized at each and every point in space. It also assumes the evolution of the oscillations associated with the uncertainty principle are defined by wavefunction. Therefore, according to theory, even a pure vacuum has a VERY, VERY, VERY large number of point oscillators each contributing to its energy.

However, this would be true if and ONLY if all fields including an electromagnetic one is quantized at each and every point in space.

For example, Johannes Kepler was able mathematically define the laws of planetary motion in terms of a HYPOTHETICAL point called the center of gravity which defines the evolution of their orbits. This is because in physics, the center of mass is the unique point where the energy of the distributed mass sums to zero.

However, we know a planet has a volume bigger than the unique point which defines its center of gravity,

Similarly, the point in space that quantum mechanics uses to define the evolution of quantum system may ONLY be a hypothetical one which defines the UNIQUE point where its energy distribution of that system sums to zero

This conclusion is supported by the fact the fact particles such as an electron can be diffracted because it is impossible to explain that if was a mathematical point that has no volume. Another observation is that particles are observed to collide in particle accelerators. This could not happen if they had no volume.

However, to understand zero-point energy and why the cosmological constant predicted by quantum mechanics is so high in terms of dynamics of space-time we must first establish a connection between evolution of the wave function which defines a quantum environment and the properties of the space-time. This can be accomplished because in Relativity its evolution is defined in terms of an electromagnetic wave while, as was just mentioned the wave function defines how a quantum environment evolves to the point where it is observed.

This commonality suggests the wave function could be a mathematical representation of an electromagnetic wave in space-time.

One can connect them because the science of wave mechanics and Relativity tells us an electromagnetic wave would move continuously through space-time unless it is prevented from moving through time by someone or something interacting with it. This would result in it being confined to three-dimensional space. The science of wave mechanics also tells us the three-dimensional “walls” confining the movement of both an electromagnetic wave and point defined by the wavefunction will result in it being reflected back on itself thereby resulting in the creation of a resonant or standing wave in three-dimensional space. Additionally, it tells us its energy can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency of that standing wave while at the same time. Additionally, it tells us the particle defined by the wave function would have an extended volume equal to the wavelength of its standing wave.

Putting it another way if an electromagnetic wave or the wave function is prevented from moving through space either by being observed or encountering an object it will be reduced or “Collapse” to a form a standing wave that would define the quantized energy quantum mechanics associates with a particle.

However, as was mentioned earlier the fact that a particle has an EXTENDED volume suggests the point the wave function uses to defines its evolution MAY ONLY be a hypothetical one which defines where its energy distribution sums to zero similar to how the point called the center of gravity can be used to define the evolution of a planets position.

As was mentioned earlier the discrepancy between the vacuum energy predicted by quantum mechanics and its observed value may be due to the fact that it applies the uncertainty principal to each and every mathematical point in space.

Therefore, to understand why this discrepancy occurs one must show how and why that would NOT define the vacuum energy in quantum system.

As was just shown Relativity and the science of wave mechanics tell us the energy of the standing wave would be distributed over a volume of space-time that corresponds to is wavelength. However, as was also shown earlier the mathematical point quantum mechanics uses to define a particle position MAY only represent where energy of distribution of this standing wave sums to zero.

This means to accurately determine the vacuum energy in a quantum system one must FIRST define why one should NOT repeat NOT apply the uncertainty to the mathematical point defined by the wave function BUT TO energy “volume” of a particle.

The fact that both of these theories assume that energy or information volume of a system can nether be created or destroy provides the basis for the connecting the uncertainty principal to the dynamics of a space-time environment and the cosmological constant.

THIS IS BECAUSE IT DEFINES THE UNCERTAINTY PRINCIPAL AND WHY THE MEASUREMENT OF ANY ONE OF THE PROPERTIES OF THAT VOLUME INCLUDING THE MOMENTUM OR POSITION WILL AFFECT THE OTHER.

As was mentioned before quantum mechanics defines both momentum and position with respect to a one-dimensional point in the mathematical field of the wave function. However, the accuracy of the information as to where that point is in relation to the center of its information volume is directly related to how much of it is taken from the system. This means the more accurate the measurement the more information regarding it must be removed from the system and the less is available to measure its other component.

For example, as was mentioned earlier because the information volume of a system remains constant the more of it is taken out regarding its momentum means there will be less to define its position. This makes the determination of its position more uncertain because there is less information left in its volume to define its position. While the more information taken out of it regarding its position will result in there being less to define its momentum. This makes this determination of its momentum more uncertain because less information left in that volume to define it.

However, the same would be true when measuring either the momentum or position of a particle in a relativistic system because its energy is also conserved. Therefore because, the accuracy of a measurement is directly related to the amount to energy taken out of a system; the measurement of each component of a momentum or position will affect the other. For example, the added energy required to make a more accurate measurement of a systems momentum will result in there being less to define its position. This makes the determination of its position more uncertain because there is less energy in that system to define it. While the more additional energy required to make a more accurate measurement of its position will result in there being less to define its momentum. This makes this determination of its momentum more uncertain because less energy left in the system to define it.

As was mentioned earlier quantum mechanics define the cosmological constant in terms of the summation of amount of energy in a point “volume” of space has as prescribed by Werner Heisenberg’s uncertainty principal

However as was also mentioned earlier the point in space that quantum mechanics uses to define a system may ONLY be a hypothetical one used to define its evolution similar to how the center or gravity is used to define the evolution of objects in orbit.

This suggest, to define the vacuum energy of a quantum system and the Cosmological Constant one would have to derive it NOT by applying Heisenberg’s uncertainty principal to all mathematical points in space but to the extended volume of space that point represents.

THERE ARE SEVERAL EXPERIMENTAL WAYS OF VERIFYING THIS CONCLUSION.

For example, we can determine the cross section and therefore the volume of a particle by the frequency of their collisions in particle accelerators. Then using that volume determine how many oscillators occupy a given volume and apply the uncertainty principal to them instead of every mathematical point to calculate the how much vacuum energy they would create. Then compare that value with the observed one.

Hopefully this may greatly reduce or eliminate the disagreement between the observed value of vacuum energy density and the one suggested by quantum field theory because it would reduce the number of oscillators in a given volume of space.

The post Solving the cosmologic constant problem in terms of the dynamics of space time. appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Should we allow math to define our existence or have it define our math? appeared first on Unifying Quantum and Relativistic Theories.

]]>All of our modern sciences take their names from ancient Greek. In the case of physics, that word is “physik” which translates to “knowledge of nature and is dedicated to understanding how and why “our world” behaves the way it does.

Proponents of this definition like Einstein focused on developing mathematical theories which not only quantified how gravity works in terms of a curvature in space-time but why it does terms of how objects in “our world” follow a curvature surface. Putting it another way they gave us the ability NOT ONLY to mathematical quantify “our world” but understand WHY and HOW one made up of space-time behaves the way it does.

However, there is another definition of physics that assumes it should ONLY have to quantify what we observe and therefore we should NOT attempt to understand how and why it exists

Proponents of this definition have developed a system of mathematics called quantum mechanics which ONLY quantifies what we observe. However, it DOES NOT follow the rules that define the behavior of “our world” because it assumes it exists in several superpositioned states at the same time which reduced to one when they are observed. Putting in another way they believe science should only be concerned with defining best way to quantifying observations and not about why or how they come about.

However, we believe the ancient Greeks would disagree because as was mentioned earlier they defined a physicist as someone who was dedicated to NOT only quantifying “our world” but understanding how and why it behaves the way it does. Therefore, they MAY not have felt comfortable in calling Quantum mechanics a valid theory of “our world” or its proponents physicists because they do not attempt to understand why it behave the way it does.

Even so there are some proponents of quantum mechanics who have suggested that because, to this date its system of math is only one that can accurately quantify the quantization of energy in “our world” it MUST be product of that mathematical structure

However, because most if not all of the constants in the equations used to define its mathematical structure are derived from “our world” it is difficult to determine if it is a product of its mathematical structure or if that structure is a product of it

But the math of quantum mechanics may not be the only one that can define how and why we observe what we do in “our world”

For example, one can use mathematics to determine why we observe 4 apples on a table by assuming that originally there were two on the it and two were added or there were six and two were taken away but only one of those equations define how and why they actually got there.

Putting it another way there are in most case many ways to quantify both the number of apples on a table and what we observe in “our world”.

This suggests there MAY be able to find another mathematical system other than the one provided for by quantum mechanics that can define why energy is quantize base on how it behaves in “our world”.

For example, in “our world” observations, the science of wave mechanics and Relativity tells us an electromagnetic wave moves continuously through space-time unless it is prevented from moving through time by someone or something interacting with it. This would result in it being confined to three-dimensional space. The science of wave mechanics also tells us the three-dimensional “walls” of this confinement will result in its energy being reflected back on itself thereby creating a resonant or standing wave in three-dimensional space. This would cause the energy of an electromagnetic wave to be concentrated at the point in space were a particle would be found. Additionally, wave mechanics also tells us the energy of a resonant system such as a standing wave can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency that the wave function associates with a particle.

Putting it another way when an electromagnetic wave is prevented from moving through space time either by being observed or encountering an object it is reduced or “Collapses” to a form a standing wave that would define the quantized energy quantum mechanics associates with a particle.

As was mentioned earlier there are in most cases many ways to mathematically quantify both the number of apples on a table and what we observe in “our world”. Therefore, we should not assume the solutions provided by quantum mechanics are the only ones that will make accurate predictions of its behavior.

What we as physicists and mathematicians MUST decide is should we allow math to define our existence or have existence define our math because it is possible a new system of math based on the behavior of “our world” could open doors to new technologies that will enable our civilization to advance beyond were one based on quantum mechanics can.

The post Should we allow math to define our existence or have it define our math? appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Defining antimatter in terms of the field properties of space-time appeared first on Unifying Quantum and Relativistic Theories.

]]>Antimatter is a material composed of antiparticles and every particle we know of has an antimatter companion that is virtually identical to itself with opposite electric charge. Physics predicts that matter and antimatter must be created in almost equal quantities, and that this would have been the case during the Big Bang. What’s more, it is predicted that the laws of physics should be the same if a particle is interchanged with its antiparticle – a relationship known as CP symmetry. However, the universe we see doesn’t seem to obey these rules. It is almost entirely made of matter, so where did all the antimatter go? It is one of the biggest mysteries in physics to date.

Therefore, to define ALL the properties of antimatter in terms of the field properties of space-time one must first define how it evolves to produce both particles and antiparticles and then explain why our universe is made ALMOST ENTIRELY OF MATTER.

Einstein defined the evolution of a space-time environment in terms of an electromagnetic wave moving through its field properties and derived a particle and its mass in terms of a curvature caused by local increase in its energy density. This means to define antiparticles one must first explain how electromagnetic energy evolves in a space-time environment to create a local increase in its energy density and why it is responsible for particle creation.

One can accomplish that by using the science of wave mechanics along with the fact that Relatively tells us an electromagnetic wave moves continuously through space-time unless it is prevented from doing so by someone or something interacting with it. This would result in its energy being confined to three-dimensional space. The science of wave mechanics also tells us the three-dimensional “walls” of this confinement will result in its energy being reflected back on itself thereby creating a resonant or standing wave in three-dimensional space. This would cause its energy to be concentrated at the point in space were a particle would be found. Putting it another way this defines how electromagnetic energy evolves in a space-time environment to create a local increase in its energy density and why it is responsible for the creation of particles.

The next step in defining the properties of antimatter is to show why every particle we know of has an antimatter companion that is virtually identical to itself.

One can understand this by using an analogy of how water reacts when an object is either added to or removed from it.

For example, if one depresses an empty cup in water its surface will become elevated to exactly make up for the quantity of water displaced while if some removes a cup of water its surface will become depressed enough to make up for the water that was removed.

Similar to water if a particle causes a portion of “surface” of space-time to become depressed it will result in a portion of it to become elevated enough to exactly make up for that depression. While if a portion of the “surface’ of space-time elevated by an antiparticle it will result in a portion of it to become depressed enough to exactly make up for that elevation.

As was mentioned earlier Einstein defined a particles mass in terms of a curvature cause by increase in its energy density

Putting it another way this defines why every matter particle has an antimatter companion that is virtually identical to itself and why it must be created in almost equal quantities because it shows why the curvatures associated with their energy density are interdependent and oppositely directed each other.

However, it also provides a solution to one of the BIGGEST mysteries in physics or why the universe is made up almost entirely of matter, even though both observation and prediction suggest that matter and antimatter must be created in almost equal quantities.

This is because it takes a little more energy to lift or elevate cup of water above its surface than it does to depress it below it in part because gravity opposes it being lifting while favoring it being depressed

Similarly, it would take a little more energy to elevate or lift the “surface” of three-dimensional space than it would to depress it due in part to the fact the gravitational component of matter below that “surface” would oppose the lifting associated with antimatter while favoring the depression associated with matter.

Therefore, some energy associated with matter will be left over after all of the antimatter has been eliminated.

One can also understand why their electrical charge is opposite by comparing it to the energy stored in elastic bands.

For example, if one takes two elastic bands side by side and depress down on one and up on the other a force will be developed that will cause them to be attracted to each other

Similarly classical physics tells us an attractive force will be developed by the differential energy density that exists between a matter and its antimatter counterpart that will result in a force to be developed that will cause them to be attracted to each other.

This explains why matter and antimatter particle have opposite electric charges or are attracted to each other is because of the effects their energy densities have on the fabric of space-time

Additionally, one can understand why the spin properties of neutral particles such as a neutron and an antineutron are opposite directed by comparing them to spin properties of high-and-low-pressure areas in our atmosphere. For example, in a high-pressure area air rotates clockwise while in a low one it does so in a opposite direction or counter clockwise.

For the same reason the energy in high energy volume of space-time that defines a neutral particle would rotate in an opposite direction from the low energy volume that defines its antiparticle.

This shows how one can defining the properties of antimatter in terms of the field properties of space-time and why our universe almost entirely made of matter.

The post Defining antimatter in terms of the field properties of space-time appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Electron diffraction and the downfall of Quantum Mechanics appeared first on Unifying Quantum and Relativistic Theories.

]]>Physics is an observational science whose purpose is not only to explain what we observe but what it is and why we can observe it. For example, for almost 2000 years the geocentric model of the universe was able to successfully predict planetary orbits. Its downfall was caused in part by the observation the moons of Jupiter did not revolve around the earth and the fact Johannes Kepler was able mathematically define the laws of planetary motion that agreed with observation in terms of them orbiting the sun. However, those laws only define how a planet moves in terms a mathematical point called the center of gravity but does not define what it is.

For example, the observation that we can move on the surface of the earth tells us it has volume bigger than the point which defines its center of gravity. Putting it another way it requires at least two pieces of information to fully describe a particle, object, planet or universe. The first is its position which can be defined in terms of a mathematical point in space and the second is information about how it interacts with its environment such as a person walking on it. That tells what is it.

Quantum Mechanics has been very successful at describing the position of particles in terms of a mathematical point. However, that does NOT mean it defines what they are.

The fact particles such as an electron can be diffracted supports that conclusion because it is impossible to explain that in terms of a point particle that has no volume. Another observation is that particles are observed to collide in particle accelerators. This could not happen if they had no volume.

However, there are many who feel the mathematics of the wave function that defines that point also gives us a complete description of what a particle is. However, if true they __MUST__ be able use a mathematical property of it to explain how the point it defines as a particle can collide with others in particle accelerators or create diffraction patterns. If they cannot, they MUST repeat MUST accept the DOWNFALL of the idea that the wave function gives a complete definition of a particle and accept the that it can only define its position.

As was mentioned earlier it requires at least two pieces of information to fully describe a particle, either it its position or momentum and how in interacts with its environment.

Quantum Mechanics provide one, the position of a particle but as was just shown it cannot not tell what it is or how it interacts with its environment.

However, a core principle of Quantum Mechanics is that a particle’s position can ONLY be define only in terms of probabilities. This means one can understand what a particle is in terms of its core principle if one can define how interacts with its environment to create those probabilities.

One way of doing this would be to use the fact the interactions in both quantum and space-time environments are defined or controlled by waves. For example, Relativity defines evolution of space-time in terms of the energy propagated by electromagnetic wave while Quantum Mechanics defines it in terms of the mathematical evolution of the wave function.

This suggests the wave function that governs the probabilistic evolution of the point defining a particle’s particle position may be a mathematical representation of an electromagnetic wave that governs evolution in space time. If true one should be able to derive it those probabilities in terms of the interaction of that point with space-time.

One can accomplish this by using the science of wave mechanics and the observable properties of space-time.

For example, the science of wave mechanics along with the fact that Relatively tells us wave energy moves continuously through space-time unless it is prevented from doing so by someone or something interacting with it. This would result in its energy being confined to three-dimensional space. The science of wave mechanics also tells us the three-dimensional “walls” of this confinement will result in its energy being reflected back on itself thereby creating a resonant or standing wave in three-dimensional space. This would cause its wave energy to be concentrated at the point in space were a particle would be found. Additionally, wave mechanics also tells us the energy of a resonant system, such as a standing wave can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency. This defines how and why Quantum Mechanics can define energy in terms of quantized units of space time.

Putting it another way if an electromagnetic wave is prevented from moving through time either by being observed or encountering an object it is reduced or “Collapses” to a form a standing wave that would define the quantized energy quantum mechanics associates with a particle.

However, it also tells us a particle would occupy an extended volume of space defined by the wavelength of its standing wave.

Putting it another way what defines the fact that a particle appears where it does is NOT determined by probabilities associated with the point Quantum Mechanics define as its position but an interaction of an electromagnetic wave with the physical properties of space-time.

However, IT ALSO tells us the reason particles collide in particle accelerators or create diffraction patterns is because they have and extended volume defined by the mathematical properties of the wave function.

Not only that, it shows the probabilities Quantum Mechanics associates with the position of a particle is the result of the fact it defines them in terms of a mathematical point in space which would be randomly distributed with respect to a center of the standing wave which earlier defined a one. Therefore, the randomness of where that point is with respect to a particle’s center will result in its position, when observed to be randomly distributed in space. Pitting it another way one must define where it appears in terms of probabilities to average the deviations that are caused by the random placement of that point.

The reason why it is not necessary to use probabilities in Relativity is because those deviations are average out by the large number of particles in objects like the moon and planets.

As was mentioned earlier it requires at least two pieces of information to fully define a particle, object planet or our universe. The first is its position the second what it is or how it interacts with its environment.

As was shown above NEITHER Relativity or Quantum Mechanics CAN do both on their own. However, if we combine them, we can create Theory of Everything which will explain BOTH the quantum properties of particle and the relativistic properties of our universe.

The post Electron diffraction and the downfall of Quantum Mechanics appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Why a photon is what it is. appeared first on Unifying Quantum and Relativistic Theories.

]]>Einstein tells us particles with mass cannot move faster than the speed of light. However, Quantum Mechanism tells us that all energy including electromagnetic MUST be quantized and because of that it assumes it is propagated by a particle called a photon.

However, because observations of particles in particle accelerators APPEAR to verify Einstein’s assumption that if they had mass, they COULD NOT move at the speed of light one must assume they have no mass.

But if it has no mass, it also has no energy because his equation E=mc^2 tells us energy is equivalent to mass.

Some have tried to use a mathematical argument the equation E=mc^2 is a special case of the more general equation: E2 = p2c2 + m2c4 which for a particle with no mass, reduces down to E = p2c2. Therefore, because photons (particles of light) have no mass, they must obey E = pc and they get all of their energy from their momentum. However, the “p” in the equation NOT ONLY represents the momentum of a photon it also represents the energy associated with its motion. Thus, according to E=mc^2 that energy MUST also be considered mass. Putting it another way it does NOT MATER how we define the energy of a photon the fact that it has energy means it also has mass and therefore, SHOULD NOT be able move at the speed of light.

(Some have suggested that because “E” is the total relativistic energy, which consists of rest mass (mc^2), and momentum (pc) it is fundamentally wrong to say that anything with energy has mass. Therefore, a photon with momentum can still carry energy because it has no rest mass. However, even though Einstein may have defined Relativistic energy in terms of its components such as rest mass, and momentum he did not make the same distinction regarding their energy. What he DID do was define gravity and therefore mass in terms of a curvature in space-time caused by the energy density of space. This means that we should NOT assume the increase in its energy density caused by the momentum of photon will NOT do the same. Since his equation E=mc^2 defines the energy contained in the curvature in space-time he associated with mass we must assume the added energy density associated with a photon’s momentum will cause it to have mass. This means it is as some have suggested FUNDAMENTALLY WRONG to say the momentum of photon can carry energy because it has no rest mass.”)

Therefore, if electromagnetic energy was propagated by a photon Einstein Theories would be invalidated, because it is impossible to use it to define how a particle could propagate energy at that speed.

While if one can show that electromagnetic energy is NOT propagate by the particle called a photon it would invalidate Quantum mechanics because one of its core principals is that all energy it quantized.

This suggests if one could explain ALL of the observable properties of a photon PURELY in terms of the theoretical structure of either one of these theories it would validate one over the other.

For example, one can use the science of wave mechanics to understand how energy can be propagated faster than the speed of light in terms of the continuous field properties of the space-time environment defined by Einstein because it tells us waves move energy from one location to another without transporting the material they are moving on. For example, a water molecule does not actually travel with the waves but does transmit that movement associated with it to the next unit of water. Putting it another way the molecules that make up the wave remain stationary with respect to the back ground of the water. Additionally, it will continue to do so unless it is obstructed by encountering an object or beach.

Similarly, an electromagnetic wave in space-time COULD move at the speed of light because it does not move the energy associated with its peaks and valleys it creates in space-time but would transmit them to the next unit of space-time. Putting it another way the units of space-time that make up an electromagnetic wave WOULD remain stationary with respect to the background of space-time while its energy moves through space in the form of a wave.

However, one can also use the science of wave mechanics to understand why an electromagnetic wave ALWAYS takes on the form of a particle called a photon if it is prevented from moving through space by an interaction with an observer or the “external world”.

For example, wave mechanics tells us an electromagnetic wave would move through the continuously properties of space-time unless it is prevented from doing so by someone observing or interacting with it. This would result in its energy being confined to three-dimensional space. It also tells us the three-dimensional “walls” of this confinement will result in its energy being reflected back on itself thereby creating a resonant or standing wave in three-dimensional space. This would cause its wave energy to be concentrated at the point in space were a particle would be found. Additionally, wave mechanics also tells us the energy of a resonant system, such as a standing wave can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency. This explains how and why an electromagnetic wave becomes quantized in the form of a particle called a photon if it is prevented from moving through space-time by interacting an observer or the “external world” of something.

This shows if one assumes that electromagnetic energy is propagated BY a wave NOT a particle one can explain how it can be propagated though space at the speed of light and why when it interacts with the external world of an observer it APPEARS as a photon in a manner that is consistent with the assumptions of Einstein Theory of Relativity.

This mechanism for the creation of a photon from an electromagnetic wave is consistent with the quantum mechanical observation that the wave properties of energy or the wave function as they like to call it only reduces or COLLAPSES to a photon or quantized unit of energy when it is observed or interacts with something.

However, as was mentioned earlier Quantum Mechanism tells us electromagnetic energy MUST be propagated by a particle called a photon however it CANNOT explain how it can move at the speed of light SOLELY in terms of its theoretical structure.

This suggests that Einstein theory provides the best theoretical model for understanding why a photon is what it is because it can explain ALL of its observable properties in terms of its theoretical structure whereas Quantum mechanics CAN NOT.

The post Why a photon is what it is. appeared first on Unifying Quantum and Relativistic Theories.

]]>The post Can Entanglement determine if QM or Relativity rules the universe appeared first on Unifying Quantum and Relativistic Theories.

]]>This is because it is one of the central principles of quantum physics. In short it assumes two particles or molecules share on a quantum level one or more properties such as spin, polarization, or momentum. It assumes this connection persists even if you move one of the entangled objects far away from the other. Therefore, when an observer interacts with one the other is instantly affected.

However, it contradicts a core principal of Einstein’s Theory of Relativity which states that no information can be transmitted instantaneously or faster than the speed of light.

Since these two concepts are diametrically opposite, if one can define the mechanism responsible for entanglement in terms of either one it would invalidate the other.

This is because there is irrefutable experimental evidence the act of measuring the state of one of a pair of photons instantaneously affect the other even though they are physically separated from each other.

As was mentioned earlier quantum physics, assumes ALL entangled particles, not only photons remain connected so that actions performed on one immediately affect the other, even when separated by great distances, while Einstein tells us that instantaneous or faster than light communication between to particles is impossible.

However, he also told us the relative distance between two objects or points in space is defined by their relative motion with respect to those points and that there is no preferred reference frame by which one can define that distance.

Therefore, he tells the distance between the observational points in a laboratory, can be defined from the perspective of the photons moving at the speed of light.

Yet, his formula for length contraction tells us the separation from the perspective of two photons moving at the speed of light between the observational points use to determine entanglement would be ZERO no matter how far apart they might be from the perspective of an observer in that laboratory. This is because, as was just mentioned according to the concepts of Relativity one can view the photons as being stationary and the observers as moving at the velocity of light.

Therefore, according to Einstein’s theory all photons which are traveling at the speed of light are entangled no matter how far they may appear to be someone who is looking at them. Additionally, it also tells us information exchange between two entangle photons does not travel faster than the speed of light because from their perspective the distance between the observation points where information was read is zero.

In other words, entanglement of photons can be explained and predicted terms of the relativistic properties of space-time as defined by Einstein as well as by quantum mechanics.

HOWEVER, AS WAS MENTIONED EARLIER ONE OF THE CORE PRINCIPALS OF QUANTUM MECHANICS IS THAT ALL PARTICLES SHARE ON A QUANTUM LEVEL ONE OR MORE PROPERTIES SUCH AS SPIN POLARIZATION OR MOMENTUM.

This gives us a way of experimentally determining which of these two theories define why entanglement occurs because if it is found that some particles that are NOT moving at the speed of light experience entanglement it would validate one of the core principals of quantum mechanics and invalidate Relativities assumption that information cannot be exchange instantaneously or faster that the speed of light.

However, one MUST ALSO use another core principle of quantum mechanics defined by De Broglie that particles are made up wave with a wavelength defined by

? = h/p to determine if it or Einstein’s theories define how the universe works. This is because it tells us all material particles have an extended volume equal to their wavelength

Yet because ALL particles have an extended volume equal to their wavelength there will be an overlap or entanglement if the distance separating them is less than their volume as defined by De Broglie.

This tells us some particles moving slower than the speed of light CAN BE entangled if the relativistic distance between the observation points from the perspective of the particles is less than their extended volume is because from their perspective they are in physical contact.

This means that both relativity and quantum mechanics tell us that all particles CAN be entangled if the distance between the end points of the measurements of their shared properties is less than their wavelength or volume as defined by De Broglie.

However, this gives us a way to DEFINITIVELY determine which one of these theories defines the reason for entanglement because we can precisely define the wavelength and therefore the volume of a particle by, as mentioned earlier using De Broglie formula ? = h/p while one can determine, the relative distance between the observation points from the perspective of the particles being observed by using Einstein formula for length contraction. If it is found entanglement DOES NOT occur if that distance is greater than a particles volume then it would invalidate the core principles of quantum mechanics that two particles or molecules share on a quantum level one or more properties such as spin, polarization, or momentum no matter how far they are separated. However, if it is found that entanglement does occur even if the separation was greater than their volume it would invalidate the core principals of relativity that no information can be transferred faster that the speed of light.

In other words, it gives us an experimental way to UNEQUIVOCALLY to determine if Quantum Mechanics or Einstein’s’ theories define why the universe is what it is.

The post Can Entanglement determine if QM or Relativity rules the universe appeared first on Unifying Quantum and Relativistic Theories.

]]>The post A classical reason why electrons do not fall into the nucleus of an atom appeared first on Unifying Quantum and Relativistic Theories.

]]>Quantum mechanics assumes the quantization of energy is what prevents electrons from falling into the nucleus of atoms. However, Classical Wave Mechanics provides another explanation base the observation that a system which is oscillating at its natural resonant frequency is one the most efficient ways to store and transfer energy between different storage modes. This combined with the law conservation of energy which tells us it can neither be created or destroyed suggests the reason why electrons do not fall into the nucleus MAY BE because the most efficient way to store their energy is in resonate systems.

One of the core principals of quantum mechanics is that the energy of all electrons is stored in a wave defined by de Broglie’s equation ?dB = h/p.

Therefore, to verify the reason electrons do not fall into the nucleus is the law conservation of energy and not the fact that quantum mechanics tell us it is quantized one must first show how a resonate system can be created in the space around the nucleus in terms of the non-quantized properties of a wave.

Science of wave mechanics tells us the wave energy of an electron would move continuously in the space around the nucleus it is bound to. However, as mentioned earlier a system which is oscillating at its natural or harmonic of its resonant wavelength is one the most efficient ways to store energy. Therefore, the most efficient way to store it would be in a wave moving in a path where the circumference is equal to the wavelength or a harmonic of its resonate system.

However, observations and the science of wave mechanics also tells us the energy of a resonant system, such as a standing wave can only take on the discrete or quantized values associated with its fundamental or a harmonic of its fundamental frequency.

This tell us the energy of the electrons orbiting an atom MAY NOT be quantized just because quantum mechanics say they are but because the most efficient way to store their energy is in a quantized resonant system.

As was mentioned earlier energy can neither be created or destroyed therefore an electron’s energy could NEVER repeat NEVER disappear by falling into a nucleus and therefore it MUST repeat MUST be stored someplace.

Yet as was also mentioned earlier classical wave mechanics tells us the most efficient way to store energy is in resonant system such as the standing wave. This tells us the energy in each level would most likely be stored in a resonant system or standing wave that has the energy associated with that level.

Both quantum mechanics and as was shown above classical wave mechanics gives valid reasons why electrons do not fall in the nucleus. Quantum mechanics assumes they do not because their energy is quantized based ONLY on the assumption it is quantized. However, as was show above classical wave mechanics and law of conservation of energy gives another reason which are just as valid in terms of the observable properties standing waves and the fact that energy has NEVER been observed to be either created or destroyed.

Putting it another way the reason electrons do no fall into the nucleus MAY NOT be because Quantum mechanics tells us they are quantized but because observations of resonant systems and the law of conservation of energy tell us their energy can NEVER repeat NEVER be destroyed or as mentioned earlier disappear into the nucleus.

Physics is a science based on observation. Therefore, if two ideas give the same result one should give more creditability to the one which can be verified observationally instead of one that cannot.

The post A classical reason why electrons do not fall into the nucleus of an atom appeared first on Unifying Quantum and Relativistic Theories.

]]>